Study Results Preview
December 14, 2017

Mark Warner
Vice President
Advanced Energy Solutions
Gabel Associates
Study Goals And Scope

• The “NJ EV Market Study” Provides A Foundation For The ChargEVC Roadmap

• Key Questions:
 ➢ Where is the NJ EV market today?
 ➢ What are the opportunities for growth?
 ➢ What are the costs and benefits of expanded EV adoption?
 ➢ What are the implications for infrastructure and utilities?

• Scope
 ➢ Focus on light duty vehicles, consider various scenarios from 2018-2050
 ➢ Explored EV implications through the lens of energy market impacts
 ➢ Detailed Market Simulation Model Based On NJ Parameters
 ➢ Evaluate economic impacts
 ➢ Evaluate environmental impacts
 ➢ Specifically consider “natural” and “managed” vehicle charge scheduling
New Jersey Lags Other Adoption-Leaders By Almost A Factor Of Two
Findings: Highlights

Finding Highlights:

• Untapped Opportunity, Potential For Growth In New Jersey
 ➢ New Jersey could increase its EV adoption by a factor of TWO to FOUR

• Full Economic Benefits Portfolio
 ➢ EV adoption changes grid loading, resulting in significant economic benefits for ALL RATEPAYERS
 ➢ Energy cost efficiencies will deliver as much as $4.3B by 2035 under “Scenario Two”, increasing to $19.4B by 2050
 ➢ At current prices, it costs 10.67 cents/mile to fuel with gasoline, 4.49 cents/mile to “fuel” with electricity
 ➢ New Jersey drivers will save an estimated $16.7B on vehicle operating expense through 2035 (Scenario Two)
 ➢ The “Social Cost Of Carbon”, using federal metrics, represents $5.6B of additional savings through 2035 (Scenario Two)
 ➢ NET Benefits, after accounting for estimated costs, are also strongly positive (>2B by 2035, Scenario Two, Managed)

• Environmental Benefits
 ➢ Every electrically fueled mile is 69% - 79% cleaner than an average gasoline fueled mile
 ➢ Both CO2 and NOx are reduced dramatically with increased EV use, necessary to achieving state goals (GWRA, NOx)
 ➢ Improvements in air quality directly affect public health, especially in the urban core and along high-travel corridors

• Significant Implications For Infrastructure And Utilities
 ➢ Utility will realize increased revenues, cost efficiencies, and strategic opportunities for load shaping
 ➢ Past 5-10% penetration, grid reinforcement will be necessary, supports other modernization efforts
Findings: Gross Economic Impact

EV Benefits Continue To Grow With Adoption, 2050 Benefits 4X 2035 Benefits

- Most of the energy cost efficiencies are delivered through reduced wholesale energy prices, and scale strongly with EV penetration.
Findings: CO2 Impacts
(transportation only)

- Scenario Two Reduces CO2 emissions 24.4% by 2035, a reduction of 40.1% by 2050

- For GWRA Goals:
 - Gas CO2 emissions must reduce to 8.4M tons
 - By 2050:
 - S1: 28.1 M tons
 - S2: 21.7 M tons
 - S3: 10.3 M tons
 - These results assume “business as usual” generation

Reductions Are Greater If The Grid Is Further Carbonized, And A Cleaner Grid, Are BOTH Required To
Findings: Infrastructure Impacts

- **PEV Adoption**
 - **S2: ~2035**
 - **S2: ~2025**

- **PEV Penetration**
 - **~ 10%**
 - **~ 30%**
 - **~ 2050**

Assuming Mostly Managed Charging

- **NOW**
 - **~ 5 - 10 Yrs**
 - **Phase I**
 - **Minimal, But Non-Zero:**
 - Mostly isolated xFmr impacts
 - Service upgrades may be needed
 - xFmr upgrades probably within existing operations profile
 - **Note:** above 5% penetration, multiple Evs per xFmr assured
 - MANAGED CHARGING makes a big difference on when, and to what extent, impacts emerge

- **~ 10 Yrs**
 - **Phase II**
 - **Reinforcement Response:**
 - xFmr upgrades becoming common, cluster impacts likely
 - Initially mostly reactive, but transition to more proactive reinforcement.
 - **Grid will need to be fully reinforced by 30% penetration.**

- **~ 15 Yrs**
 - **Phase III**
 - **Grid Optimization:**
 - EV loading now a significant fraction of consumption (20-30%). Can be used to optimize load shape.
 - Necessary grid reinforcements may be motivated by other factors (aging, loading, etc), and can be synergistic with other upgrades.

Widespread EV Adoption, Combined With Smart Grid Integration, Are An Unprecedented Opportunity For Modernization And Load Optimization.